skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Witte, Samuel J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonrelativistic axions can be efficiently produced in the polar caps of pulsars, resulting in the formation of a dense cloud of gravitationally bound axions. Here, we investigate the interplay between such an axion cloud and the electrodynamics in the pulsar magnetosphere, focusing specifically on the dynamics in the polar caps, where the impact of the axion cloud is expected to be most pronounced. For sufficiently light axions m a 10 7 eV , we show that the axion cloud can occasionally screen the local electric field responsible for particle acceleration and pair production, inducing a periodic nulling of the pulsar’s intrinsic radio emission. At larger axion masses, the small-scale fluctuations in the axion field tend to suppress the backreaction of the axion on the electrodynamics; however, we point out that the incoherent oscillations of the axion in short-lived regions of vacuum near the neutron star surface can produce a narrow radio line, which provides a complementary source of radio emission to the plasma-resonant emission processes identified in previous work. While this Letter focuses on the leading order correction to pair production in the magnetosphere, we speculate that there can exist dramatic deviations in the electrodynamics of these systems when the axion backreaction becomes nonlinear. Published by the American Physical Society2024 
    more » « less